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ABSTRACT
Background : Atrial fibrillation (AF) is remarkably common in patients with ob-
structive hypertrophic cardiomyopathy (oHCM) and is associated with consider-
able symptoms and poor survival. Studies on the relationship between HRV and 
AF in patients with HCM are lacking. Herein, we aimed to investigate whether the 
addition of HRV variables can improve AF detection in these patients. 

Methods: We consecutively enrolled 1,112 patients with oHCM, including 158 
patients with AF. The HRV variables included the standard deviation of normal-
to-normal intervals (SDNN), root mean squared successive difference (rMSSD), 
and percentage of cycles differing from the preceding cycle by >50ms (percent-
age of normal-to-normal (NN) intervals that differ by more than 50 milliseconds 
[pNN50]). SDNN, rMSSD, and pNN50 were also transformed into binary variables 
underlying the cutoff values for AF diagnosis (termed SDNN_cutoff, rMSSD_cutoff, 
and pNN50_cutoff, respectively).

Results: The mean age of this cohort was 48.94±12.37 years, and 451 (40.6%) pa-
tients were female. The SDNN, rMSSD, and pNN50 were higher in patients with AF 
than in their counterparts. In multivariate analysis, HRV variables were indepen-
dently associated with AF, and pNN50_cutoff had the largest effect size (odds ratio 
7.86) among the HRV variables. Age, body mass index, hyperlipidemia, left atrial 
diameter, and left ventricular outflow tract gradient were included in the control 
model for AF diagnosis (area under the curve [AUC] 0.719). Adding HRV variables 
to the control model separately, the model including pNN50_cutoff performed best 
in identifying AF among all models (AUC 0.736) and had a significant integrated 
discrimination improvement (IDI) compared with the control model (IDI=0.064).

Conclusions: HRV was independently associated with AF, and adding HRV vari-
ables to the model improved AF detection, particularly pNN50_cutoff.

Keywords: Atrial Fibrillation; Obstructive Hypertrophic Cardiomyopathy; Heart 
Rate Variability

Abbreviations: AF: Atrial Fibrillation; oHCM: Obstructive Hypertrophic Cardio-
myopathy; HRV: Heart Rate Variability; SDNN: Standard Deviation of Normal-to-
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INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia 
in hypertrophic cardiomyopathy (HCM), occurring in 
approximately 20% of patients with HCM [1]. Patients with 
AF are more likely to experience considerable symptoms 
and have a worse long-term prognosis [2,3]. Given its high 
prevalence and morbidity, understanding the mechanisms 
and detection of AF in patients with HCM is critical for early 
intervention [4]. Several pathophysiological mechanisms 
underlying the development of AF have been studied in the 
general population [5,6]. In recent years, increasing evidence 
has suggested that autonomic nervous system (ANS) 
dysfunction, including sympathetic and parasympathetic 
dysfunction, is involved in the pathogenesis of AF [7,8]. 
Previous studies have confirmed the presence of ANS 
dysfunction in patients with HCM [9,10]. However, no 
association between ANS dysfunction and AF has been 
reported in patients with HCM. 

Heart rate variability (HRV) changes slightly during 
consecutive cardiac cycles and can be quantified to assess 
the sympathetic and parasympathetic tones of the cardiac 
ANS [11]. A twenty-four hour Holter monitor can be used to 
evaluate HRV and as a noninvasive assessment of the cardiac 
ANS [12]. HRV has been extensively studied in the general 
population and has important prognostic implications for 
various cardiovascular diseases [13-15]. ANS dysfunction 
is a potential trigger for new-onset AF and a risk factor for 
AF [16]. However, studies on the relationship between HRV 
and AF in patients with HCM are lacking. Here, we aimed to 
investigate the association between HRV and AF in patients 
with obstructive HCM (oHCM), and whether adding HRV 
variables can improve the detection of AF.

MATERIALS AND METHODS

Study Population

Between January 2015 and December 2019, 1,491 patients 
with obstructive HCM who underwent septal myectomy at 
our institution were scanned. Of the 1,491 patients, 379 
were excluded for the following reasons: 1) absence of a 
preoperative ambulatory Holter electrocardiogram (ECG) 
evaluation or 24-hour Holter ECG-recorded AF, 2) prior 
history of heart surgery, and 3) preoperative permanent 
pacemaker installation. Consequently, 1,112 patients were 
included in the final analysis. The diagnosis of HCM was 
based on the American Heart Association and American 
College of Cardiology guidelines [17], which mainly included 
unexplained septal hypertrophy with a thickness>15 mm 
or a septal cardium with a thickness>13 mm, and a family 
history of HCM in the absence of other cardiac or systemic 

diseases. Septal myectomies were performed on patients 
whose symptoms were refractory to drug treatment and 
who had a left ventricular outflow tract (LVOT) gradient 
≥50 mmHg at rest or during provocation. Septal myectomy 
(extended Morrow procedure) was performed as previously 
described [18]. All patients signed informed consent forms 
before enrollment, and the study was approved by the Ethics 
Committee of Fuwai Hospital. All the procedures were 
conducted in accordance with the ethical principles of the 
Declaration of Helsinki.

Twenty-Four-Hour Holter ECG Monitoring

All patients in this study underwent 24-hour Holter 
ECG monitoring (BI9800; Biomedical Instruments Co., 
Ltd., Osaka, Japan) 2–5 days before surgery. Sinus rhythm 
was mandatory for study entry, and each 24-hour Holter 
required at least 20 h of artifact-free data. Holter recordings 
were computer-analyzed, and all Holter readings were 
checked by the investigators. The time-domain analysis of 
HRV included the standard deviation of normal-to-normal 
intervals (SDNN), the standard deviation of mean normal-
to-normal intervals for each 5-minute segment of a 24-hour 
HRV recording (SDANN), the root mean square difference 
of successive normal-to-normal intervals (rMMSD), and 
the percentage of NN50 (normal-to-normal intervals >50 
ms) in the total number of R-wave to R-wave (RR) intervals. 
In the time domain index, SDNN reflects total sympathetic 
and parasympathetic nervous system activity, whereas 
SDANN reflects sympathetic nervous system tone. Root 
mean squared successive difference (RMSSD) reflects 
changes in the parasympathetic nervous system tone, and 
the percentage of normal-to-normal (NN) intervals that 
differ by more than 50 milliseconds (pNN50) reflects the 
parasympathetic nervous system tone activity.

Echocardiography

Two experienced physicians conducted the 
echocardiographic examinations using an E9 ultrasound 
system (General Electric Company, Boston, MA, USA). All 
patients underwent preoperative and postoperative two-
dimensional and Doppler echocardiography. Left atrial 
diameter (LAD), left ventricular (LV) end-diastolic diameter, 
LV ejection fraction, and ventricular septal thickness 
were measured according to the recommendations of the 
American Society of Echocardiography [19]. LVOT gradient 
was calculated using the simplified Bernoulli equation: These 
methods are described in detail in our previous publication 
[18].

AF Diagnosis and Evaluation

The diagnosis of AF met the definition of the 2020 

Normal Intervals; rMMSD: Root Mean Square Difference of Successive Normal-to-Normal Intervals; pNN50: Percentage of Nor-
mal-to-Normal Intervals that Differ by More than 50 Milliseconds; AUC: Area under the Curve; IDI: Integrated Discrimination 
Improvement; HCM: Hypertrophic Cardiomyopathy; ANS: Autonomic Nervous System; LAD: Left Atrial Diameter; RR: R-Wave 
to R-Wave Interval; LV: Left Ventricular; ROC: Receiver Operating Characteristic; AIC: Akaike Information Criterion; NRI: Net 
Reclassification Improvement; IDI: Integrated Discrimination Improvement; BMI: Body Mass Index.
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European Society of Cardiology Guidelines [20]: A standard 
12-lead ECG recording or a single-lead ECG tracing of ≥30s 
showing a heart rhythm with no discernible repeating P 
waves and irregular RR intervals is considered diagnostic 
of clinical AF. AF was defined as a preoperative diagnosis 
confirmed by a 12-lead ECG or a documented history before 
myectomy.

Statistical Analysis

Categorical variables are presented as numbers and 
percentages, and continuous variables as means and 
standard deviations or medians with interquartile ranges, 
as appropriate. Differences in characteristics across groups 
were compared using analysis of variance or the chi-square 
test. Correlations between continuous and categorical 
variables were assessed using Pearson’s or Spearman’s 
correlation coefficients, as appropriate. Receiver operating 
characteristic (ROC) curves were constructed to explore 
the optimal cutoff value of each HRV variable for detecting 
AF before transforming the HRV variables into categorical 
variables as candidates for logistic regression analysis models. 
Univariate and multivariate logistic regression analyses 
were performed to determine the association between HRV 
and AF. All relevant clinical and echocardiographic variables 
were included in the multivariate model, with a p-value<0.1. 
Multivariate logistic regression models were constructed by 
adjusting the variables from the univariate analysis using a 
backward method before adding each HRV variable to the 
multivariate logistic regression model separately as the final 

model. The Akaike information criterion (AIC) was used 
to compare the goodness of fit of each model, and model 
discrimination was assessed by comparing the area under 
the curve (AUC), net reclassification improvement (NRI), and 
integrated discrimination improvement (IDI). A nomogram 
was constructed based on the optimal model to estimate AF 
probability. All statistical analyses were performed using 
the R version 4.2.2 (R Foundation for Statistical Computing, 
Vienna, Austria) and GraphPad Prism version 8.0 (GraphPad 
Software Inc., La Jolla, CA, USA).

RESULTS

Clinical Characteristics of the Study Cohort

The 1,112 consecutive patients with oHCM included 
158 with AF and 954 without AF. The mean age of the 
study population was 48.94±12.37 years, and 451 (40.6%) 
patients were female. The baseline characteristics of these 
patients were grouped into those with and without AF, and 
the results are summarized in Table 1. Compared to patients 
without AF, the patients with AF were older (52.53±12.24 vs. 
48.35±12.30 years, p<0.01), more likely to have palpitation 
(47.5% vs. 24.2%, p<0.01), had a larger LAD (48.69±7.09 
vs. 44.49±6.46 mm, p<0.01), and had a lower LVOT gradient 
(75.77±28.89 vs. 84.80±28.89 mmHg, p<0.01). Moreover, 
SDNN (124.89±60.15 vs. 112.35±45.00, p=0.002), rMSSD 
(43.90±27.21 vs. 32.96±27.96, p<0.01), and pNN50 
(19.91±22.33 vs. 10.75±11.95, p<0.01) were significantly 
increased in patients with AF compared to those without AF. 

Table 1: Baseline characteristics of the study population

Variables Overall Patient Without AF 
(N=954) Patients with AF (N=158) p

Female (N,%) 451 (40.6) 394 (41.3) 57 (36.1) 0.25

Age,year 48.94 (12.37) 48.35 (12.30) 52.53 (12.24) <0.001

BMI kg/m2 25.60 (3.48) 25.52 (3.44) 26.08 (3.68) 0.065

Heart rate beats/min 71.94 (9.74) 71.92 (9.34) 72.06 (11.89) 0.866

Systole blood pressure (mmHg) 124.14 (15.35) 124.45 (15.35) 122.26 (15.29) 0.097

Diastole blood pressure (mmHg) 72.68 (10.16) 72.70 (10.01) 72.54 (11.07) 0.855

Chestpain (N,%) 384 (34.5) 336 (35.2) 48 (30.4) 0.274

Synscope (N,%) 253 (22.8) 216 (22.6) 37 (23.4) 0.91

amaurosis (N,%) 237 (21.3) 201 (21.1) 36 (22.8) 0.702

palpitation(N,%) 306 (27.5) 231 (24.2) 75 (47.5) <0.001

Diabetes Mellitus (N,%) 63 (5.7) 52 (5.5) 11 (7.0) 0.565

Hyperlipidemia (N,%) 373 (33.5) 310 (32.5) 63 (39.9) 0.084

Hypertesion (N,%) 337 (30.3) 285 (29.9) 52 (32.9) 0.499

Coronary artery disease (N,%) 156 (14.0) 137 (14.4) 19 (12.0) 0.51

Previous heart surgery (N,%) 76 (6.8) 61 (6.4) 15 (9.5) 0.208

NYHA III/IV (N,%) 855 (76.9) 734 (76.9) 121 (76.6) 1
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Echocardiographic parameters  

Left atrial diameter (mm) 45.09 (6.71) 44.49 (6.46) 48.69 (7.09) <0.001

IVST (mm) 19.99 (5.02) 20.01 (5.03) 19.84 (4.93) 0.683

LVEDD (mm) 42.88 (5.03) 42.82 (4.97) 43.26 (5.40) 0.304

LVEF (%) 69.45 (5.48) 69.52 (5.57) 69.05 (4.91) 0.317

RVD (mm) 21.39 (3.00) 21.33 (3.02) 21.74 (2.85) 0.114

MLVWT(mm) 22.21 (4.83) 22.30 (4.96) 21.68 (3.97) 0.14

Gradient (mmHg) 83.51 (29.46) 84.80 (29.38) 75.77 (28.89) <0.001

Moderate or severe MR (N,%) 589 (53.0) 502 (52.6) 87 (55.1) 0.629

Medical therapy  

β receptor blocker (N,%) 1064 (95.7) 910 (95.4) 154 (97.5) 0.327

Calcium channel blocker (N,%) 360 (32.4) 304 (31.9) 56 (35.4) 0.425

HRV  

SDNN (ms) 114.13    (47.61) 112.35 (45.00) 124.89 (60.15) 0.002

SDANN (ms) 100.65 (66.18) 100.12 (63.54) 103.92 (80.56) 0.507

rMSSD (ms) 34.51 (28.11) 32.96 (27.96) 43.90 (27.21) <0.001

pNN50 (%) 12.04 (14.24) 10.75 (11.95) 19.91 (22.33) <0.001

Values are expressed as the mean ± standard deviation or median (range) or number (percentage). BMI:  body mass index, 
NYHA: New York Heart Association, IVST: interventricular septal thickness, LVEDD: left ventricular end-diastolic diameter, 
RVD: right ventricular diameter, LVEF: left ventricular ejection fraction, LVEF: left ventricular ejection fraction, MLVWT: 
maximal left ventricular wall thickness, MR: mitral regurgitation. SDNN, the standard deviation of the mean R-R intervals; 
SDANN, the standard deviation of mean normal-to-normal intervals for each 5-minute segment of a 24-hour HRV recording; 
rMSSD, root mean squared successive difference; pNN50, percentage of cycles differing from the preceding one by > 50 ms. 
Significant p-values (p < 0.05) are presented in bold.

The other clinical variables listed in Table 1 were comparable 
between the two groups.

Correlation Analysis Between HRV and Clinical 
Parameters

We analyzed the correlation between the time-domain 
metrics of HRV and clinical data, and the results are 
summarized in Supplementary Figure 1. The LAD was 
positively correlated with rMSSD (r=0.09, p<0.01) and 
pNN50 (r=0.089, p<0.01). The preoperative LVOT gradients 
were negatively correlated with rMSSD (r=–0.10, p<0.01) 
and pNN50 (r=–0.11, p<0.01), whereas PNN50 was strongly 
correlated with rMSSD (r=0.96, p<0.01) and SDNN (r=0.48, 
p<0.01).

Logistic Regression Analyses of Risk Factors 
for AF Episodes

Before the univariate analysis, we plotted ROC curves to 

determine the optimal cutoff values of HRV variables for the 
diagnosis of AF and then transformed the HRV variables into 
categorical variables underlying the cutoff value, which were 
termed SDNN_cutoff, rMSSD_cutoff, and pNN50_cutoff. The 
results of the ROC curves are presented in Supplementary 
Figure 2, and the cutoff values for SDNN, rMSSD, and PNN50 
were 153.5, 34.5, and 43.5, respectively. The results of the 
univariate logistic regression analysis are summarized 
in Supplementary Table 1. Age, body mass index (BMI), 
hyperlipidemia, LAD, and LVOT gradient were included in 
the multivariate regression analysis to construct the control 
model. The HRV variables were then added separately to the 
control model to construct new models. The results of the 
multivariate logistic regression analysis for AF are presented 
in Table 2. After adjusting for age, BMI, hyperlipidemia, 
LAD, and LVOT gradients, we observed that SDNN, rMSSD, 
and pNN50 were independently associated with a higher 
prevalence of AF. Additionally, SDNN_cutoff, rMSSD_cutoff, 
and pNN50_cutoff were independent indicators of AF. 
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Table 2: Multivariable logistic regression analysis models for AF

Variables
Crude

OR
95%CI p

Adjusted

OR
95%CI p

SDNN 1.00 1.00- 1.01 0.006 1.004 1001 - <0.001

1.01

SDNN_cutoff 2.11 1.37-3.20 <0.001 2.26 1.41-3.57 <0.001

rMSSD 1.01 1.01 - 1.02 <0.001 1.01 1.003 - 0.010

1.02

rMSSD_cutof 2.14 1.52-3.01 <0.001 2.09 1.45-3.01 <0.001

f

pNN50 1.03 1.02 - 1.04 <0.001 1.03 1.02 - 1.04 <0.001

pNN50_cutof 9.90 5.67-17.51 <0.001 7.86 4.25-14.7 <0.001

f

SDNN indicates the standard deviation of the mean R-R intervals; rMSSD, root mean squared successive difference; pNN50, 
percentage of cycles differing from the preceding one by > 50 ms. The SDNN, rMSSD, and pNN50 were transformed into binary 
variables underlying the cutoff for AF detection termed SDNN_cutoff, rMSSD_cutoff, and pNN50_cutoff, respectively. OR, odds 
ratio, CI, confidential interval. Each model has adjusted for age, body mass index, hyperlipidemia, left atrial diameter and left 
ventricular outflow tract gradient
Among these variables, pNN50_cutoff had the largest effect 
size, with an odds ratio of 7.86 (95% confidence interval [CI]: 
4.25–14.7).

Assessing the Performance of HRV Models for 
AF Detection

As described earlier, we added HRV variables separately 
to the control model to construct new models and then 
evaluated the performance of each new model. The results 
are summarized in Table 3. The difference in AUC between 
the new and control models was not significant; however, the 
NRI and IDI in the new models improved significantly. The 
model including pNN50_cutoff had the largest AUC (0.736; 
95% CI: 0.690–0.782), highest IDI (0.064), and lowest AIC 
(774), indicating the best fit compared with the other models. 
A nomogram was developed based on the new pNN50_cutoff 
model to calculate the probability of AF (Figure 1A), which 
included age, BMI, hyperlipidemia, LAD, LVOT gradient, 
and pNN50_cutoff. The calibration curve for the nomogram 
was close to the 45° diagonal for the most part; however, 
it slightly exceeded the diagonal at a high predicted risk, 
indicating that the nomogram was well calibrated in most 
situations. In contrast, it might underestimate the risk 

when the risk is already high (Figure 1B). The AUC of the 
new model of the pNN50_cutoff was 0.736 (95% CI: 0.690–
0.782), demonstrating good discriminative ability of the 
model (Figure 1C).

We further divided the SDNN, rMSSD, and pNN50 into five 
groups according to their quintile intervals and investigated 
the prevalence of AF in each group, including the prevalence 
of AF in patients having less than and more than the cut-off 
values of the SDNN, rMSSD, and pNN50. A positive Spearman’s 
linear association was observed between AF prevalence 
and SDNN (Figure 2A), rMSSD (Figure 2) (Figure 2B), and 
pNN50 (Figure 2C). The prevalence of AF in patients with 
SDNN>153.5 or rMSSD>34.5 (cutoff value) was 23.5% and 
20.5%, respectively, nearly two-fold higher than that in their 
counterparts. Notably, we observed that the prevalence of 
AF in patients with pNN50>43.5 was 57.1%, five-fold higher 
than that in their counterparts, suggesting that pNN50 is a 
good indicator of AF with high specificity in patients with 
oHCM.

DISCUSSION

The findings of the current study can be summarized as 
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Table 3: Performance of SDNN, rMSSD, and pNN50 for detecting atrial fibrillation

Discrimination                                                                   Reclassification	                                   Goodness of fit

Variables AUC P NRI P IDI P AIC

(95%CI) (95%CI) (95%CI)

Control 0.719 - - - - - 813.7

(0.673-0.765)

SDNN (vs.control)
0.725 0.36

0.264

0.002

0.015

0.006 804.8

(0.679-0.770) 7     (0.094-0.434) (0.004-0.026)

0.731 0.23 0.250 0.041 <0.00

rMSSD (vs.control) (0.687-0.776) 2 (0.083-0.417) 0.003 (0.022-0.061) 1 787.5

0.729 0.36 0.238 0.048 <0.00

pNN50 (vs.control) (0.684-0.774) 7 (0.073-0.404) 0.004 (0.026-0.070) 1 784.0

SDNN_cutoff 0.721 0.74 0.053 0.016

(vs.control) (0.675-0.767) 2 (-0.004-0.109) 0.070 (0.006-0.026) 0.002 804.6

rMSSD_cutoff 0.732 0.19 0.070 0.018 <0.00

(vs.control) (0.687-0.776) 5 (0.010-0.130) 0.022 (0.008-0.030) 1 800.1

pNN50_cutoff 0.736 0.06 0.149 <0.00 0.064 <0.00 774.0

(vs.control) (0.690-0.782) 3 (0.074-0.225) 1 (0.037-0.091) 1

AUC indicates area under the curve; NRI, net reclassification improvement; IDI, integrated discrimination improvement; AIC, Akaike 
information criterion. Control model means the multivariable logistic model contained variables from univariable analysis after adjusting 
using a backward method, in which including age, body mass index, hyperlipidemia, left atrial diameter, and left ventricular outflow tract 
gradient. other abbreviations can be found in table2
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Figure 1A: the nomogram was developed based on the pNN50 cutoff model to calculate the probability of AF detection, and the 
model included age, BMI, hyperlipidemia, LAD, LVOT gradient and pNN50_cutoff; 1B, the calibration curve for the nomogram was 
mostly close to the 45° diagonal but slightly exceeded the diagonal at high predicted risk; 1C, the AUC of nomogram.

 

Figure 2: A positive Spearman’s linear association was observed between the prevalence of AF and SDNN (Figure 2A), rMSSD (Fig-
ure 2B), and pNN50 (Figure 2C). The prevalence of AF in patients with SDNN > 153.5 or rMSSD > 34.5 (cutoff value) was 23.5% and 
20.5%, respectively, the prevalence of AF in patients with pNN50 > 43.5 was 57.1%.

follows: HRV variables were significantly higher in patients 
with AF than in those without AF. SDNN, rMMSD, and pNN50 
were independently associated with a higher prevalence 
of AF, and positive Spearman’s linear associations were 
observed between the prevalence of AF and SDNN, rMMSD, 
and pNN50. Furthermore, in multivariable models, the model 
including pNN50_cutoff had the largest effect size, with 
an odds ratio of 7.86 (95% CI: 4.25-14.7) for AF detection, 
while it had the largest AUC (0.736; 95% CI: 0.690–0.782), 
the highest IDI (0.064), and the lowest AIC (774), indicating 
that the addition of HRV variables can improve the diagnostic 
ability of AF in patients with oHCM, particularly pNN50_
cutoff.

The cardiac ANS contains both extrinsic and intrinsic 
cardiac ANSs, including the sympathetic and parasympathetic 
nervous systems. The parasympathetic nervous system 
includes the epicardial autonomic ganglia, fat pad, and the 
associated connecting nerve fibers, which form a broad and 
highly connected epicardial neural network [21]. When 
activated, different physiological effects occur to maintain 
stable balance and sinus rhythm in the heart. It can be 
induced or promoted when the ANS is imbalanced [22]. 
In clinical practice, directly monitoring autonomic nerve 
activity is challenging, and cardiac autonomic regulation 
and remodeling can only be indirectly evaluated. Therefore, 

considering the specificity and sensitivity of clinical 
surveillance, the selection of HRV parameters on a 24 h 
Holter monitor to reflect cardiac ANS activity is currently 
the primary research approach [12]. HRV describes the 
oscillations between the RR intervals of a continuous 
heartbeat in Holter monitoring, which can be viewed as 
periodic changes in heart rhythm over time and constitutes 
a noninvasive method for the qualitative and quantitative 
evaluation of the ANS.

In this study, we analyzed the overall HRV profiles 
of patients with HCM using a large dataset. Our results 
demonstrated that the overall HRV of patients with HCM 
was decreased compared to the normal values of each index, 
indicating that ANS activity was reduced in patients with 
HCM. This is similar to the results of previous studies, most 
of which revealed that	  autonomic dysfunction 
in patients with HCM was dominated by decreased 
parasympathetic nervous system activity and increased 
sympathetic nervous system activity [23,24]. Autonomic 
dysfunction, represented by reduced HRV, is a risk factor 
for poor prognosis in cardiovascular diseases, such as 
ventricular arrhythmias and sudden death [25]. However, to 
the best of our knowledge, no previous study has conducted 
HRV analysis of AF in patients with HCM.
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AF occurs via various mechanisms, including electrical, 
structural, and neural remodeling, inflammation, and 
oxidative stress [5,6]. The cardiac ANS plays a substantial role 
in the development of AF [7]. We demonstrated that SDNN 
(representing total autonomic activity), RMSSD, and PNN50 
(representing parasympathetic activity) were significantly 
increased in patients with HCM who developed AF compared 
to those who did not, suggesting that total ANS activity and 
parasympathetic nervous system activity are increased in 
patients with HCM. We speculate that patients with HCM 
who have experienced AF have increased autonomic activity, 
predominantly based on increased parasympathetic activity, 
including the original ANS tone, which is of great significance 
in developing and maintaining AF [26]. Acetylcholine 
released in the physiological state of the parasympathetic 
nerves binds to the M2 receptors on cardiomyocytes, 
causing a decrease in rhythm, conduction, and myocardial 
contractility, thereby inhibiting cardiac activity. Thus, 
parasympathetic nerves weaken the heart under normal 
conditions [27]. Smeets et al. [28], demonstrated that 
moderate stimulation of the parasympathetic nervous 
system shortens the impulse length and decreases the size of 
re-entrant circuits, contributing to AF. Moreover, Schauerte 
et al. [29], reduced the effective refractory period at various 
atrial sites by stimulating the bilateral cervical vagus 
nerves, thereby triggering AF. This evidence suggests that 
ANS activation can trigger AF by causing changes in atrial 
electrophysiology through acetylcholine release via nerve 
endings. AF also interferes with the distribution and function 
of the vagus nerve in the atria, which increases vagus tension 
and stabilizes the AF. A recent Mendelian randomization 
study [30], confirmed a significant correlation between 
HRV measurements and new-onset AF in the general 
population, supporting a causal relationship between the 
two. Furthermore, Fioranelli et al. [31], observed a decrease 
in the left frequency (LF), LF/high frequency (HF) ratios, 
and an increase in the HF ratio in patients with paroxysmal 
AF without structural heart disease, suggesting an elevated 
vagal tone, which is consistent with our findings.

Our results demonstrated that SDNN, rMSSD, and pNN50 
all correlated with the occurrence of AF in patients with 
HCM and were independent indicators of AF. Moreover, 
adding each of the three variables to the multivariate model 
improved the diagnostic ability of AF, particularly pNN50 and 
rMSSD, further confirming the relationship between changes 
in parasympathetic tone and AF occurrence in patients 
with HCM. This is similar to the finding that rMSSD and 
PNN50 are independent risk factors for AF recurrence after 
radiofrequency ablation, in which parasympathetic nerves 
are believed to play a key role [16]. The results of a recent 
meta-analysis of HRV similarly confirmed previous findings 
[32], in that the higher the SDNN and rMSSD, the more 
imbalanced the autonomic regulation and predominance 
of parasympathetic regulation, and the more easily AF is 
maintained. Sympathetic excitation is associated with the 
development of ventricular arrhythmias [33], and when 
sympathetic excitability is relatively enhanced, myocardial 

electrical stability is diminished, which predisposes 
individuals to malignant ventricular arrhythmias. In contrast, 
our results demonstrate that increased parasympathetic 
activity is associated with the development of AF in patients 
with HCM.

We also observed a negative correlation between SDNN 
and both age (p<0.01) and BMI (p< 0.01), suggesting that the 
total autonomic tone activity decreases with age and BMI. 
Our previous study demonstrated that age and BMI were 
independent risk factors for perioperative AF in patients 
with HCM [34], suggesting that HRV may play a role in the 
development of AF through age and BMI. Moreover, LAD 
positively correlated with rMSSD (p<0.01) and pNN50 
(p<0.01). However, the correlation between left atrial 
size and AF has been widely verified [35], suggesting that 
changes in the parasympathetic nervous system tension may 
be associated with the occurrence of AF through changes in 
left atrial size. Furthermore, the preoperative LVOT gradient 
was negatively correlated with rMSSD (r=–0.10, p<0.01) and 
pNN50 (r=–0.11, p<0.01), which suggests that for patients 
with HCM, the higher the LVOT gradient, the lower the 
parasympathetic tone, and the less prone they are to AF. AF 
is less likely to occur in patients with oHCM [36]. Our study 
provides an alternative explanation for these results by 
showing that the LVOT gradient in patients with HCM may 
influence the parasympathetic tone, which in turn influences 
AF occurrence.

Some studies [32,37], have reported ANS changes before 
and after paroxysmal AF episodes, with findings suggesting 
that sympathetic and parasympathetic imbalance play an 
important role in AF episodes; however, we did not analyze 
HRV before and after AF episodes in 24 h Holter results. 
Prolonged HRV measurements (24 h) are more appropriate 
for estimating an individual’s basal autonomic state. Short-
term (5 min) HRV measurements provide information about 
the system dynamics that disrupt basal homeostasis and 
may be part of the trigger for arrhythmias, as well as atrial or 
ventricular premature beats [38]. 

Our study had some limitations. First, the diagnosis of AF 
in our study was based on 12-lead ECG and previous medical 
records, which may have missed some patients who had 
AF episodes, did not undergo electrocardiography, or were 
not mentioned in the medical records. Second, for technical 
reasons, excluding patients with multiple premature atrial 
beats during the ambulatory ECG recording period was 
necessary, which may have been the target population for 
our study. Third, because this study was retrospective, no 
causal conclusions could be drawn. Fourth, some patients 
received medication during the 24 h Holter recording period, 
which may have affected the HRV measurements. However, 
at baseline, the proportion of medications used by patients 
with and without AF did not differ significantly, suggesting 
that the medication itself may have no significant effect. HRV 
is an indirect measure of cardiac autonomic tone; therefore, 
the results of the present study should be interpreted with 
caution.
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CONCLUSIONS

HRV was significantly higher in patients with oHCM and 
AF than in those without AF. SDNN, rMMSD, and pNN50 
were independently associated with a higher prevalence 
of AF, and positive Spearman’s linear associations were 
observed between the prevalence of AF and SDNN, rMMSD, 
and pNN50. The addition of HRV variables can improve the 
diagnostic ability of AF in patients with oHCM, particularly 
pNN50_cutoff.
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